论文标题

单一群体的单词度量:改进的小范围

Word Measures on Unitary Groups: Improved Bounds for Small Representations

论文作者

Brodsky, Yaron

论文摘要

让$ f $是一组免费的等级$ r $,并在f $中修复了一些$ w \。对于任何紧凑的组$ g $,我们都可以定义$μ__{w,g} $ by $ g $ by(haar-)均匀采样$ g_1,...,g_r \ in G $中的g_r \ in g $并评估$ w(g_1,...,...,g_r)$。在[Arxiv:1802.04862]中,Magee和Puder研究了$ g $是unital unital $ u(n)$的案例,并分析了$μ__{w,u(n)} $的矩量如何以$ n $为单位。特别是,他们在这些时刻获得了渐近范围,与换向器长度和稳定的换向器长度有关。我们继续他们的工作线,对$μ__{w,u(n)} $的矩形行为进行更精确的分析,这表明它与$ w $的另一代代数不变性有关:其原始等级。 此外,我们证明了一种猜想的汉尼和puder的特殊情况([[Arxiv:2009.00897,猜想1.13]),内容涉及$μ__{W,U(n)} $下的不可减至特征的预期值的渐近行为。

Let $F$ be a free group of rank $r$ and fix some $w\in F$. For any compact group $G$ we can define a measure $μ_{w,G}$ on $G$ by (Haar-)uniformly sampling $g_1,...,g_r\in G$ and evaluating $w(g_1,...,g_r)$. In [arXiv:1802.04862], Magee and Puder studied the case where $G$ is the unitary group $U(n)$, and analyzed how the moments of $μ_{w,U(n)}$ behave as a function of $n$. In particular, they obtained asymptotic bounds on those moments, related to the commutator length and the stable commutator length of $w$. We continue their line of work and give a more precise analysis of the asymptotic behavior of the moments of $μ_{w, U(n)}$, showing that it is related to another algebraic invariant of $w$: its primitivity rank. In addition, we prove a special case of a conjecture of Hanany and Puder ([arXiv:2009.00897, Conjecture 1.13]) regarding the asymptotic behaviour of expected values of irreducible characters under $μ_{w, U(n)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源