论文标题
在亚轨道实验的B模型数据上的NILC性能分析
Analysis of NILC performance on B-modes data of sub-orbital experiments
论文作者
论文摘要
在宇宙微波背景(CMB)中观察原始B模型是将来大多数CMB实验的主要科学目标。预计该信号在天空的任何区域中都远低于极化银河发射(前景),指出需要有效组件分离方法,例如NEDLET-ILC(NILC)。在这项工作中,我们探讨了使用NILC从轨道实验的部分基本数据中重建的B模式图的可能性,从而解决了此类应用产生的并发症:E-B泄漏,二重滤波和光束卷积。我们考虑了未来实验中的两个互补模拟数据集:大规模极化探索器的气球传播望远镜的望远镜,它针对的是观察原始B模式角动力谱的重新离子和重组峰值的观察,以及仅在simons of Simons opervatory of Simons opervatory的小型光圈望远镜,仅设计了重点构造的bugs bugn bugn bugn bugg bugn bugg。我们评估了两种替代技术的性能,以纠正CMB E-B泄漏:回收技术(Liu等人,2019年)和ZB方法(Zhao&Baskaran 2010)。我们发现,考虑到所考虑的实验的敏感性,除了$ \ ell <20 $的刷新贴片中的回收方法外,它们都在可忽略的水平下降低了E-B泄漏残差。因此,我们实施了两个管道的扩展,迭代B分解和扩散涂料,这使我们能够以$ \ ell \ geq 5 $恢复输入CMB B模式功率。我们证明了一线过滤和束卷积不会影响B模式重建。最后,采用适当的掩蔽策略,我们发现NILC前景减法允许对与所考虑的CMB实验的目标相吻合的张量与尺度比率达到敏感性。
The observation of primordial B-modes in the Cosmic Microwave Background (CMB) represents the main scientific goal of most of the future CMB experiments. This signal is predicted to be much lower than polarised Galactic emission (foregrounds) in any region of the sky pointing to the need for effective components separation methods, such as the Needlet-ILC (NILC). In this work, we explore the possibility of employing NILC for B-mode maps reconstructed from partial-sky data of sub-orbital experiments, addressing the complications that such an application yields: E-B leakage, needlet filtering and beam convolution. We consider two complementary simulated datasets from future experiments: the balloon-borne SWIPE telescope of the Large Scale Polarization Explorer, which targets the observation of both reionisation and recombination peaks of the primordial B-mode angular power spectrum, and the ground-based Small Aperture Telescope of Simons Observatory, which is designed to observe only the recombination bump. We assess the performance of two alternative techniques to correct for the CMB E-B leakage: the recycling technique (Liu et al. 2019) and the ZB method (Zhao & Baskaran 2010). We find that they both reduce the E-B leakage residuals at a negligible level given the sensitivity of the considered experiments, except for the recycling method in the SWIPE patch at $\ell < 20$. Thus, we implement two extensions of the pipeline, the iterative B-decomposition and the diffusive inpainting, which enable us to recover the input CMB B-mode power for $\ell \geq 5$. We demonstrate that needlet filtering and beam convolution do not affect the B-mode reconstruction. Finally, with an appropriate masking strategy, we find that NILC foregrounds subtraction allows to achieve sensitivities for the tensor-to-scalar ratio compatible to the targets of the considered CMB experiments.