论文标题
具有一般回报功能的随机游戏
Stochastic Games with General Payoff Functions
论文作者
论文摘要
我们考虑多人随机游戏,其中每个玩家的回报是无限游戏的有限且可衡量的功能。通过使用Martin(1998)和Maitra和Sudderth(1998)的技术的概括,我们显示了四个不同的存在结果。在每个随机游戏中,每位玩家都有一个策略,可以保证每个球员的回报至少是她的最高价值高达$ε$,(ii)在每个子游戏中,每个播放器中的每个球员的付费至少在每个子游戏中至少在每个子游戏中,至少在每个子游戏中,至少在每个子游戏中,至少在每个子游戏中,至少是$ hermax the Extifor the Game-iii II III cormile the Game-iii II I II III the Game-III corrort, (iv)存在一个接收$ε$平衡的子游戏。
We consider multiplayer stochastic games in which the payoff of each player is a bounded and Borel-measurable function of the infinite play. By using a generalization of the technique of Martin (1998) and Maitra and Sudderth (1998), we show four different existence results. In each stochastic game, it holds for every $ε>0$ that (i) each player has a strategy that guarantees in each subgame that this player's payoff is at least her maxmin value up to $ε$, (ii) there exists a strategy profile under which in each subgame each player's payoff is at least her minmax value up to $ε$, (iii) the game admits an extensive-form correlated $ε$-equilibrium, and (iv) there exists a subgame that admits an $ε$-equilibrium.