论文标题

关于Hermite投影仪的主要分解

On primary decomposition of Hermite projectors

论文作者

Shekhtman, Boris, Tuesink, Brian

论文摘要

多项式空间上的理想投影仪$ \ mathbb {c} [\ MathBf {X}] = \ Mathbb {C} [X_ {1},\ ldots,x_ {d}] $是投影仪的投影仪,其kernel的kernel在$ \ Mathbb {c} c} [c} [c} [c} [x \ math] $ {卡尔·德·博尔(Carl de Boor)提出了理想投影仪的特征性投影仪的特征问题。在本文中,我们为这个问题做出了贡献。每个理想的投影仪$ p $都可以写成理想投影仪$ \ sum p^{(k)} $ $ \ $的总和,这样$ \ cap \ ker p^{(k)} $是理想$ \ ker p $的主要分解。我们证明,$ p $是且仅当每个$ p^{(k)} $都是Lagrange投影仪的限制。作为一个应用程序,我们构建了一个理想的投影仪$ P $,其内核是对称的理想,但是$ p $不是Lagrange投影仪的限制。

An ideal projector on the space of polynomials $\mathbb{C} [\mathbf{x}]=\mathbb{C} [x_{1},\ldots ,x_{d}]$ is a projector whose kernel is an ideal in $\mathbb{C}[ \mathbf{x}]$. The question of characterization of ideal projectors that are limits of Lagrange projector was posed by Carl de Boor. In this paper we make a contribution to this problem. Every ideal projector $P$ can be written as a sum of ideal projector $\sum P^{(k)}$ $\ $such that $\cap \ker P^{(k)}$ is a primary decomposition of the ideal $\ker P$. We show that $P$ is a limit of Lagrange projectors if and only if each $P^{(k)}$ is. As an application we construct an ideal projector $P$ whose kernel is a symmetric ideal, yet $P$ is not a limit of Lagrange projectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源