论文标题

部分可观测时空混沌系统的无模型预测

Periodic Clifford symmetry algebras on flux lattices

论文作者

Huang, Yue-Xin, Chen, Z. Y., Feng, Xiaolong, Yang, Shengyuan A., Zhao, Y. X.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Real Clifford algebras play a fundamental role in the eight real Altland-Zirnbauer symmetry classes and the classification tables of topological phases. Here, we present another elegant realization of real Clifford algebras in the $d$-dimensional spinless rectangular lattices with $π$ flux per plaquette. Due to the $T$-invariant flux configuration, real Clifford algebras are realized as projective symmetry algebras of lattice symmetries. Remarkably, $d$ mod $8$ exactly corresponds to the eight Morita equivalence classes of real Clifford algebras with eightfold Bott periodicity, resembling the eight real Altland-Zirnbauer classes. The representation theory of Clifford algebras determines the degree of degeneracy of band structures, both at generic $k$ points and at high-symmetry points of the Brillouin zone. Particularly, we demonstrate that the large degeneracy at high-symmetry points offers a rich resource for forming novel topological states by various dimerization patterns, including a $3$D higher-order semimetal state with double-charged bulk nodal loops and hinge modes, a $4$D nodal surface semimetal with $3$D surface solid-ball zero modes, and $4$D Möbius topological insulators with a eightfold surface nodal point or a fourfold surface nodal ring. Our theory can be experimentally realized in artificial crystals by their engineerable $\mathbb{Z}_2$ gauge fields and capability to simulate higher dimensional systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源