论文标题

部分可观测时空混沌系统的无模型预测

Efficient LiDAR Point Cloud Geometry Compression Through Neighborhood Point Attention

论文作者

Xue, Ruixiang, Wang, Jianqiang, Ma, Zhan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Although convolutional representation of multiscale sparse tensor demonstrated its superior efficiency to accurately model the occupancy probability for the compression of geometry component of dense object point clouds, its capacity for representing sparse LiDAR point cloud geometry (PCG) was largely limited. This is because 1) fixed receptive field of the convolution cannot characterize extremely and unevenly distributed sparse LiDAR points very well; and 2) pretrained convolutions with fixed weights are insufficient to dynamically capture information conditioned on the input. This work therefore suggests the neighborhood point attention (NPA) to tackle them, where we first use k nearest neighbors (kNN) to construct adaptive local neighborhood; and then leverage the self-attention mechanism to dynamically aggregate information within this neighborhood. Such NPA is devised as a NPAFormer to best exploit cross-scale and same-scale correlations for geometric occupancy probability estimation. Compared with the anchor using standardized G-PCC, our method provides >17% BD-rate gains for lossy compression, and >14% bitrate reduction for lossless scenario using popular LiDAR point clouds in SemanticKITTI and Ford datasets. Compared with the state-of-the-art (SOTA) solution using attention optimized octree coding method, our approach requires much less decoding runtime with about 640 times speedup on average, while still presenting better compression efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源