论文标题

不确定性引导深度融合峰值摄像机

Uncertainty Guided Depth Fusion for Spike Camera

论文作者

Li, Jianing, Liu, Jiaming, Wei, Xiaobao, Zhang, Jiyuan, Lu, Ming, Ma, Lei, Du, Li, Huang, Tiejun, Zhang, Shanghang

论文摘要

深度估计对于各种重要的现实世界应用至关重要,例如自动驾驶。但是,在高速场景中,它遭受了严重的性能降解,因为传统相机只能捕获模糊的图像。为了解决这个问题,Spike摄像头旨在以高框架速率捕获像素的亮度强度。但是,使用传统的单眼或立体声深度估计算法,使用尖峰摄像机的深度估计仍然非常具有挑战性,这些算法基于光度一致性。在本文中,我们提出了一个新型的不确定性引导深度融合(UGDF)框架,以融合Spike摄像机的单眼和立体声深度估计网络的预测。我们的框架是由于立体声尖峰深度估计在近距离上取得更好的结果而动机,而单眼尖峰深度估计在远距离的情况下获得了更好的结果。因此,我们引入了具有联合培训策略的双任务深度估计结构,并估算了分布式不确定性,以融合单眼和立体声结果。为了证明尖峰深度估计比传统摄像机深度估计的优势,我们为峰值深度估算提供了一个名为CitySpike20k的尖峰深度数据集,其中包含20K配对的样品。 UGDF在CitySpike20K上取得了最新的结果,超过了所有单眼或立体声尖峰深度估计基线。我们进行了广泛的实验,以评估我们方法对CitySpike20K的有效性和概括。据我们所知,我们的框架是第一个用于尖峰相机深度估算的双任务融合框架。代码和数据集将发布。

Depth estimation is essential for various important real-world applications such as autonomous driving. However, it suffers from severe performance degradation in high-velocity scenario since traditional cameras can only capture blurred images. To deal with this problem, the spike camera is designed to capture the pixel-wise luminance intensity at high frame rate. However, depth estimation with spike camera remains very challenging using traditional monocular or stereo depth estimation algorithms, which are based on the photometric consistency. In this paper, we propose a novel Uncertainty-Guided Depth Fusion (UGDF) framework to fuse the predictions of monocular and stereo depth estimation networks for spike camera. Our framework is motivated by the fact that stereo spike depth estimation achieves better results at close range while monocular spike depth estimation obtains better results at long range. Therefore, we introduce a dual-task depth estimation architecture with a joint training strategy and estimate the distributed uncertainty to fuse the monocular and stereo results. In order to demonstrate the advantage of spike depth estimation over traditional camera depth estimation, we contribute a spike-depth dataset named CitySpike20K, which contains 20K paired samples, for spike depth estimation. UGDF achieves state-of-the-art results on CitySpike20K, surpassing all monocular or stereo spike depth estimation baselines. We conduct extensive experiments to evaluate the effectiveness and generalization of our method on CitySpike20K. To the best of our knowledge, our framework is the first dual-task fusion framework for spike camera depth estimation. Code and dataset will be released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源