论文标题
一种机器学习方法,以预测Heusler合金家族的结构和磁性
A machine learning approach to predict the structural and magnetic properties of Heusler alloy families
论文作者
论文摘要
随机森林(RF)回归模型用于根据现有以及基于现有制备的数据库的全素合金,一半助力合金,一半助力合金,一半助力合金,逆向助力合金和第四级旋转合金来预测晶格常数,磁矩和形成能。进行了先前的分析以检查响应变量的数据点的分布,并发现在大多数情况下,数据不是正态分布的。 RF模型性能的结果足够准确,可以预测测试数据上的响应变量,并且还显示了其稳健性,可抵抗过度拟合,异常值,多重共线性和数据点的分布。使用密度函数理论(DFT),机器学习之间的奇偶校验图预测了对计算值的值,显示了线性行为,针对不同类型的Heusler合金,所有预测属性的调整后R2值位于0.80至0.94的范围内。特征重要性分析表明,价电子数在大多数预测结果的预测中起重要特征作用。还提到了用一种完整的啤酒合金和一种四元啤酒合金的案例研究将机器学习与我们较早的理论计算值和实验测量结果进行比较,这表明模型的高精度预测了结果。
Random forest (RF) regression model is used to predict the lattice constant, magnetic moment and formation energies of full Heusler alloys, half Heusler alloys, inverse Heusler alloys and quaternary Heusler alloys based on existing as well as indigenously prepared databases. Prior analysis was carried out to check the distribution of the data points of the response variables and found that in most of the cases, the data is not normally distributed. The outcome of the RF model performance is sufficiently accurate to predict the response variables on the test data and also shows its robustness against overfitting, outliers, multicollinearity and distribution of data points. The parity plots between the machine learning predicted values against the computed values using density functional theory (DFT) shows linear behavior with adjusted R2 values lying in the range of 0.80 to 0.94 for all the predicted properties for different types of Heusler alloys. Feature importance analysis shows that the valence electron numbers plays an important feature role in the prediction for most of the predicted outcomes. Case studies with one full Heusler alloy and one quaternary Heusler alloy were also mentioned comparing the machine learning predicted results with our earlier theoretical calculated values and experimentally measured results, suggesting high accuracy of the model predicted results.