论文标题
关于3D Lorentzian量子重力中空间宇宙的性质
On the Nature of Spatial Universes in 3D Lorentzian Quantum Gravity
论文作者
论文摘要
三维Lorentzian量子重力在空间上表示为非驱动总和的连续性极限,非常诱人地接近与分析方法相吻合,并且其某些特性已用有效的矩阵和其他模型来描述。为了获得对三维量子重力的更详细的理解,我们对三维因果动力学三角剖分(CDT)中的空间性超曲面的性质进行数值研究。我们测量和分析了几个量子可观察的,熵指数,局部和全局的豪斯多夫尺寸以及空间切片的量子曲率,并尝试与它们与二维量子几何系统系统的已知连续性属性匹配。在CDT量子重力的一阶相变之上,我们发现空间动力学与二维欧几里得(Liouville)量子重力相同的通用类别。在过渡下,空间切片的行为与任何已知的量子重力模型的行为不符。这可能表明存在一种新型的二维量子系统,这是由嵌入三维量子几何形状的更复杂的性质引起的。
Three-dimensional Lorentzian quantum gravity, expressed as the continuum limit of a nonperturbative sum over spacetimes, is tantalizingly close to being amenable to analytical methods, and some of its properties have been described in terms of effective matrix and other models. To gain a more detailed understanding of three-dimensional quantum gravity, we perform a numerical investigation of the nature of spatial hypersurfaces in three-dimensional Causal Dynamical Triangulations (CDT). We measure and analyze several quantum observables, the entropy exponent, the local and global Hausdorff dimensions, and the quantum Ricci curvature of the spatial slices, and try to match them with known continuum properties of systems of two-dimensional quantum geometry. Above the first-order phase transition of CDT quantum gravity, we find strong evidence that the spatial dynamics lies in the same universality class as two-dimensional Euclidean (Liouville) quantum gravity. Below the transition, the behaviour of the spatial slices does not match that of any known quantum gravity model. This may indicate the existence of a new type of two-dimensional quantum system, induced by the more complex nature of the embedding three-dimensional quantum geometry.