论文标题

使用timoshenko梁理论的声学黑洞的最佳曲线设计

Optimal Profile Design for Acoustic Black Holes using Timoshenko beam Theory

论文作者

Sørensen, Kasper S., Cornean, Horia D., Sorokin, Sergey

论文摘要

我们重新审视构建一维声学黑洞的问题。我们不用考虑Euler-Bernoulli梁理论,而是使用Timoshenko的方法,而据称在较高频率下更现实。我们的目标是最大程度地减少对归一化波数变化的约束的反射系数。我们使用变体的计算,以分析地得出相应的Euler-Lagrange方程,然后使用数值方法求解该方程,以便找到不同频率的最佳高度曲线。然后,我们将这些配置文件与先前使用Euler-Bernoulli梁理论发现的相应图表进行了比较,并看到在无量纲频率$ω$的较低范围内(使用板的最大高度定义),如预期的是,最佳曲线几乎重合。对于较高的频率,即使对于欧拉 - 伯努利理论仍然应略有有效的值,使用Euler-Bernoulli预测的曲线与Timoshenko理论预测的正确理论明显不同。对此现象的一种解释是,与恒定高度情况不同,在我们的设置中,波数也取决于最小和最大高度之间的比率。

We revisit the problem of constructing one-dimensional acoustic black holes. Instead of considering the Euler-Bernoulli beam theory, we use Timoshenko's approach instead, which is known to be more realistic at higher frequencies. Our goal is to minimize the reflection coefficient under a constraint imposed on the normalized wave number variation. We use the calculus of variations in order to derive the corresponding Euler-Lagrange equation analytically and then use numerical methods to solve this equation in order to find the optimal height profile for different frequencies. We then compare these profiles to the corresponding ones previously found using the Euler-Bernoulli beam theory and see that in the lower range of the dimensionless frequency $Ω$ (defined using the largest height of the plate), the optimal profiles almost coincide, as expected. For higher such frequencies, even for values where Euler-Bernoulli theory should still be marginally valid, the profiles predicted using Euler-Bernoulli differ substantially from the correct ones predicted by Timoshenko theory. One explanation for this phenomenon is that unlike in the constant height case, in our setting the wave numbers also depend on the ratio between the smallest and the largest heights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源