论文标题
数字双胞胎的全面综述 - 第2部分:不确定性量化和优化的作用,电池数字双胞胎和观点
A Comprehensive Review of Digital Twin -- Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives
论文作者
论文摘要
作为行业4.0时代的一项新兴技术,数字双胞胎正在获得前所未有的关注,因为它有望通过将物理世界全面地建模为一组相互联系的数字模型,从而进一步优化过程设计,质量控制,健康监测,决策和政策制定,以及更多。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术的基本作用以及数字双胞胎常用的不确定性量化和优化方法。第二篇论文介绍了数字双胞胎的关键促进技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来的方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文提出了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GitHub上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This second paper presents a literature review of key enabling technologies of digital twins, with an emphasis on uncertainty quantification, optimization methods, open source datasets and tools, major findings, challenges, and future directions. Discussions focus on current methods of uncertainty quantification and optimization and how they are applied in different dimensions of a digital twin. Additionally, this paper presents a case study where a battery digital twin is constructed and tested to illustrate some of the modeling and twinning methods reviewed in this two-part review. Code and preprocessed data for generating all the results and figures presented in the case study are available on GitHub.