论文标题

Aesust:迈向美学增强的通用风格转移

AesUST: Towards Aesthetic-Enhanced Universal Style Transfer

论文作者

Wang, Zhizhong, Zhang, Zhanjie, Zhao, Lei, Zuo, Zhiwen, Li, Ailin, Xing, Wei, Lu, Dongming

论文摘要

最近的研究表明,通用风格转移的成功取得了巨大的成功,将任意视觉样式转移到内容图像中。但是,现有方法遭受了美学上的非现实主义问题,该问题引入了不和谐的模式和明显的人工制品,从而使结果很容易从真实的绘画中发现。为了解决这一限制,我们提出了一种新颖的美学增强通用风格转移方法,可以在美学上对任意风格产生更现实和令人愉悦的结果。具体而言,我们的方法引入了一种审美歧视者,以从大量的艺术家创造的画作中学习普遍的人类自我欣赏美学特征。然后,合并了美学特征,以通过新颖的美学感知样式(AESSA)模块来增强样式转移过程。这样的AESSA模块使我们的Aesust能够根据样式图像的全局美学通道分布和内容图像的局部语义空间分布有效而灵活地整合样式模式。此外,我们还开发了一种新的两阶段转移培训策略,并通过两种审美正规化来更有效地训练我们的模型,从而进一步改善风格化的性能。广泛的实验和用户研究表明,我们的方法比艺术的状态综合了美学上更加和谐和现实的结果,从而大大缩小了真正的艺术家创造的绘画的差异。我们的代码可在https://github.com/endywon/aesust上找到。

Recent studies have shown remarkable success in universal style transfer which transfers arbitrary visual styles to content images. However, existing approaches suffer from the aesthetic-unrealistic problem that introduces disharmonious patterns and evident artifacts, making the results easy to spot from real paintings. To address this limitation, we propose AesUST, a novel Aesthetic-enhanced Universal Style Transfer approach that can generate aesthetically more realistic and pleasing results for arbitrary styles. Specifically, our approach introduces an aesthetic discriminator to learn the universal human-delightful aesthetic features from a large corpus of artist-created paintings. Then, the aesthetic features are incorporated to enhance the style transfer process via a novel Aesthetic-aware Style-Attention (AesSA) module. Such an AesSA module enables our AesUST to efficiently and flexibly integrate the style patterns according to the global aesthetic channel distribution of the style image and the local semantic spatial distribution of the content image. Moreover, we also develop a new two-stage transfer training strategy with two aesthetic regularizations to train our model more effectively, further improving stylization performance. Extensive experiments and user studies demonstrate that our approach synthesizes aesthetically more harmonious and realistic results than state of the art, greatly narrowing the disparity with real artist-created paintings. Our code is available at https://github.com/EndyWon/AesUST.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源