论文标题

使用机器学习改善台湾的碎屑流疏散警报

Improving debris flow evacuation alerts in Taiwan using machine learning

论文作者

Tsai, Yi-Lin, Irvin, Jeremy, Chundi, Suhas, Ng, Andrew Y., Field, Christopher B., Kitanidis, Peter K.

论文摘要

台湾对全球碎屑流的敏感性和死亡人数最高。台湾现有的碎屑流警告系统,该系统采用了时间加权的降雨量,当该措施超过预定义的阈值时会导致警报。但是,该系统会产生许多错误的警报,并错过了实际碎屑流的很大一部分。为了改善该系统,我们实施了五个机器学习模型,以输入历史降雨数据并预测是否会在选定的时间内发生碎屑流。我们发现,随机的森林模型在五个模型中表现最好,并且优于台湾现有系统。此外,我们确定了与碎片流的发生密切相关的降雨轨迹,并探索了缺失碎屑流的风险与频繁的虚假警报之间的权衡。这些结果表明,仅在小时降雨数据中训练的机器学习模型的潜力可以挽救生命,同时减少虚假警报。

Taiwan has the highest susceptibility to and fatalities from debris flows worldwide. The existing debris flow warning system in Taiwan, which uses a time-weighted measure of rainfall, leads to alerts when the measure exceeds a predefined threshold. However, this system generates many false alarms and misses a substantial fraction of the actual debris flows. Towards improving this system, we implemented five machine learning models that input historical rainfall data and predict whether a debris flow will occur within a selected time. We found that a random forest model performed the best among the five models and outperformed the existing system in Taiwan. Furthermore, we identified the rainfall trajectories strongly related to debris flow occurrences and explored trade-offs between the risks of missing debris flows versus frequent false alerts. These results suggest the potential for machine learning models trained on hourly rainfall data alone to save lives while reducing false alerts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源