论文标题

使用统计方法在复杂网络中影响最大化(IM)

Influence Maximization (IM) in Complex Networks with Limited Visibility Using Statistical Methods

论文作者

Ghafouri, Saeid, Khasteh, Seyed Hossein, Azarkasb, Seyed Omid

论文摘要

社交网络(SN)是一个由代表它们之间相互作用的群体组成的社会结构。 SNS最近被广泛使用,随后已成为适合产品推广和信息扩散的合适平台。 SN中的人们直接影响彼此的利益和行为。 SNS中最重要的问题之一是,如果选择将它们作为网络扩散场景的种子节点选择,以级联的方式找到可以对网络中其他节点产生最大影响的人。有影响力的扩散器是人们,如果他们被选为网络出版问题中的种子,那么该网络将拥有最多了解该扩散实体的人。这是称为影响最大化(IM)问题的文献中的一个众所周知的问题。尽管已证明这是一个NP完整的问题,并且在多项式时间内没有解决方案,但有人认为它具有子模块化功能的属性,因此可以使用贪婪的算法来解决。提出改善这种复杂性的大多数方法都是基于以下假设:整个图都是可见的。但是,对于许多真实世界图,此假设不存在。进行了这项研究是为了扩展使用链接预测技术与伪可见性图的电流最大化方法。为此,将一种称为指数随机图模型(ERGM)的图生成方法用于链接预测。使用斯坦福大学SNAP数据集的数据对所提出的方法进行了测试。根据实验测试,所提出的方法在实际图上有效。

A social network (SN) is a social structure consisting of a group representing the interaction between them. SNs have recently been widely used and, subsequently, have become suitable and popular platforms for product promotion and information diffusion. People in an SN directly influence each other's interests and behavior. One of the most important problems in SNs is to find people who can have the maximum influence on other nodes in the network in a cascade manner if they are chosen as the seed nodes of a network diffusion scenario. Influential diffusers are people who, if they are chosen as the seed set in a publishing issue in the network, that network will have the most people who have learned about that diffused entity. This is a well-known problem in literature known as influence maximization (IM) problem. Although it has been proven that this is an NP-complete problem and does not have a solution in polynomial time, it has been argued that it has the properties of sub modular functions and, therefore, can be solved using a greedy algorithm. Most of the methods proposed to improve this complexity are based on the assumption that the entire graph is visible. However, this assumption does not hold for many real-world graphs. This study is conducted to extend current maximization methods with link prediction techniques to pseudo-visibility graphs. To this end, a graph generation method called the exponential random graph model (ERGM) is used for link prediction. The proposed method is tested using the data from the Snap dataset of Stanford University. According to the experimental tests, the proposed method is efficient on real-world graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源