论文标题

时间意识的自我注意达到推荐系统中的逻辑推理

Time-aware Self-Attention Meets Logic Reasoning in Recommender Systems

论文作者

Luo, Zhijian, Huang, Zihan, Tang, Jiahui, Hou, Yueen, Gao, Yanzeng

论文摘要

在大数据时代,推荐系统在我们日常生活中的关键信息过滤表现出了杰出的成功。近年来,人们见证了推荐系统的技术发展,从感知学习到认知推理,这些认知推理将推荐的任务作为逻辑推理的过程,并取得了重大改进。但是,推理中的逻辑陈述隐含地承认有序无关紧要,甚至没有考虑时间信息在许多推荐任务中起着重要作用。此外,与时间上下文合并的建议模型往往是自我集中的,即,自动更加(少)将相关性(不相关)分别集中在自动上。 为了解决这些问题,在本文中,我们提出了一个基于神经协作推理(Tisancr)的建议模型的时间感知自我注意力,该模型将时间模式和自我注意机制集成到基于推理的建议中。特别是,以相对时间为代表的时间模式,提供上下文和辅助信息,以表征用户在建议方面的偏好,而自我注意力则是利用自我注意力来提炼信息的模式并抑制无关紧要的。因此,自我煽动的时间信息的融合提供了对用户偏好的更深入表示。在基准数据集上进行的广泛实验表明,所提出的Tisancr取得了重大改进,并且始终优于最先进的建议方法。

At the age of big data, recommender systems have shown remarkable success as a key means of information filtering in our daily life. Recent years have witnessed the technical development of recommender systems, from perception learning to cognition reasoning which intuitively build the task of recommendation as the procedure of logical reasoning and have achieve significant improvement. However, the logical statement in reasoning implicitly admits irrelevance of ordering, even does not consider time information which plays an important role in many recommendation tasks. Furthermore, recommendation model incorporated with temporal context would tend to be self-attentive, i.e., automatically focus more (less) on the relevance (irrelevance), respectively. To address these issues, in this paper, we propose a Time-aware Self-Attention with Neural Collaborative Reasoning (TiSANCR) based recommendation model, which integrates temporal patterns and self-attention mechanism into reasoning-based recommendation. Specially, temporal patterns represented by relative time, provide context and auxiliary information to characterize the user's preference in recommendation, while self-attention is leveraged to distill informative patterns and suppress irrelevances. Therefore, the fusion of self-attentive temporal information provides deeper representation of user's preference. Extensive experiments on benchmark datasets demonstrate that the proposed TiSANCR achieves significant improvement and consistently outperforms the state-of-the-art recommendation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源