论文标题
用于小型量子材料的多功能多末端电运输研究的聚合平面化策略
A Polymeric Planarization Strategy for Versatile Multi-terminal Electrical Transport Studies on Small, Bulk Quantum Materials
论文作者
论文摘要
我们报告了一种设备制造策略,该策略是使用基于光刻的电印度技术进行电运输研究的小型(<1 mm)体积量子材料上的多末端电气接触。将晶体嵌入聚合物培养基中,以平稳化顶表面,然后直接应用标准光刻和微分化技术,以形成具有各种几何形状的电极。这种方法克服了建立电气接触的晶体厚度和横向尺寸的局限性。我们使用低应力聚合物在低温下最大程度地减少外部热应变效应,从而可以对对应变敏感的量子材料进行可靠的运输测量。晶体表面平面化方法已经实现了电子传输研究,例如面内各向异性,小型BATIS3(BTS)晶体的霍尔测量,并为二维(2D)异质整合在三维(3D) / Quasi-One-One-One-One-One(Quasi-One(Quasi-One)(Quasi-nidymentional(quasi-imentional)(quasi-1d)材料上提供了独特的机会。对于许多新合成的量子材料的小型,不可用的晶体来说,我们的策略是一般的,并为对这些新型材料进行多功能运输研究铺平了道路。
We report a device fabrication strategy of making multi-terminal electrical contacts on small (< 1 mm) bulk quantum materials using lithography-based techniques for electrical transport studies. The crystals are embedded in a polymeric medium to planarize the top surface, and then standard lithography and microfabrication techniques are directly applied to form electrodes with various geometries. This approach overcomes the limitations of crystal thickness and lateral dimensions on establishing electrical contacts. We use low stress polymers to minimize the extrinsic thermal strain effect at low temperatures, which allow reliable transport measurements on quantum materials that are sensitive to strain. The crystal surface planarization method has enabled electronic transport studies such as in-plane anisotropy, Hall measurements on small, bulk BaTiS3 (BTS) crystals, and provides unique opportunities for two-dimensional (2D) heterogeneous integration on three-dimensional (3D) / quasi-one-dimensional (quasi-1D) bulk materials. Our strategy is general for many small, non-exfoliable crystals of newly synthesized quantum materials and paves the way for performing versatile transport studies on those novel materials.