论文标题

BFL:推理过故障树的逻辑

BFL: a Logic to Reason about Fault Trees

论文作者

Nicoletti, Stefano M., Hahn, E. Moritz, Stoelinga, Marielle

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Safety-critical infrastructures must operate safely and reliably. Fault tree analysis is a widespread method used to assess risks in these systems: fault trees (FTs) are required - among others - by the Federal Aviation Authority, the Nuclear Regulatory Commission, in the ISO26262 standard for autonomous driving and for software development in aerospace systems. Although popular both in industry and academia, FTs lack a systematic way to formulate powerful and understandable analysis queries. In this paper, we aim to fill this gap and introduce Boolean Fault tree Logic (BFL), a logic to reason about FTs. BFL is a simple, yet expressive logic that supports easier formulation of complex scenarios and specification of FT properties. Alongside BFL, we present model checking algorithms based on binary decision diagrams (BDDs) to analyse specified properties in BFL, patterns and an algorithm to construct counterexamples. Finally, we propose a case-study application of BFL by analysing a COVID19-related FT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源