论文标题

动摇并搅拌:远程依赖性可通过PixelCNN ++实现强大的离群值检测

Shaken, and Stirred: Long-Range Dependencies Enable Robust Outlier Detection with PixelCNN++

论文作者

Umapathi, Barath Mohan, Chauhan, Kushal, Shenoy, Pradeep, Sridharan, Devarajan

论文摘要

可靠的异常检测对于深度学习模型的现实部署至关重要。尽管经过广泛的研究,但深层生成模型产生的可能性在很大程度上被认为是对异常检测不切实际的。首先,深层生成模型的可能性很容易受到低级输入统计的偏见。其次,许多用于纠正这些偏见的解决方案在计算上是昂贵的,或者对复杂的天然数据集的推广不佳。在这里,我们使用最先进的深度自回旋模型探索离群值检测:PixelCNN ++。我们表明,PixelCNN ++的偏见主要来自基于局部依赖性的预测。我们提出了两个族裔转化的家族 - ``搅拌''和``摇动'' - 可以缓解低级偏见并隔离长期依赖对像素++可能性的贡献。这些转换在评估时很便宜,并且很容易计算。我们使用五个灰度和六个自然图像数据集对我们的方法进行了广泛的测试,并表明它们实现或超过了最新的离群检测,尤其是在具有复杂自然图像的数据集上。我们还表明,我们的解决方案与其他类型的生成模型(生成流量和变异自动编码器)很好地运行,并且它们的疗效受每个模型对本地依赖性的依赖的控制。总而言之,轻巧的补救措施足以在具有深层生成模型的图像数据上实现强大的离群值检测。

Reliable outlier detection is critical for real-world deployment of deep learning models. Although extensively studied, likelihoods produced by deep generative models have been largely dismissed as being impractical for outlier detection. First, deep generative model likelihoods are readily biased by low-level input statistics. Second, many recent solutions for correcting these biases are computationally expensive, or do not generalize well to complex, natural datasets. Here, we explore outlier detection with a state-of-the-art deep autoregressive model: PixelCNN++. We show that biases in PixelCNN++ likelihoods arise primarily from predictions based on local dependencies. We propose two families of bijective transformations -- ``stirring'' and ``shaking'' -- which ameliorate low-level biases and isolate the contribution of long-range dependencies to PixelCNN++ likelihoods. These transformations are inexpensive and readily computed at evaluation time. We test our approaches extensively with five grayscale and six natural image datasets and show that they achieve or exceed state-of-the-art outlier detection, particularly on datasets with complex, natural images. We also show that our solutions work well with other types of generative models (generative flows and variational autoencoders) and that their efficacy is governed by each model's reliance on local dependencies. In sum, lightweight remedies suffice to achieve robust outlier detection on image data with deep generative models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源