论文标题

皮质启发的放置和路由:最小化多核神经形态处理器中的内存资源

Cortical-inspired placement and routing: minimizing the memory resources in multi-core neuromorphic processors

论文作者

Leite, Vanessa R. C., Su, Zhe, Whatley, Adrian M., Indiveri, Giacomo

论文摘要

基于脑部的事件的神经形态处理系统已成为一种有前途的技术,尤其是生物医学电路和系统。但是,神经网络的神经形态和生物学实现都具有关键的能量和记忆约束。为了最大程度地减少在多核神经形态处理器中的内存资源的使用,我们提出了一种受生物神经网络启发的网络设计方法。我们使用这种方法设计针对小世界网络优化的新路由方案,同时介绍了一种硬件感知的放置算法,该算法优化了针对小型世界网络模型的资源分配。我们使用规范的小世界网络验证算法,并为其他网络提供初步结果

Brain-inspired event-based neuromorphic processing systems have emerged as a promising technology in particular for bio-medical circuits and systems. However, both neuromorphic and biological implementations of neural networks have critical energy and memory constraints. To minimize the use of memory resources in multi-core neuromorphic processors, we propose a network design approach inspired by biological neural networks. We use this approach to design a new routing scheme optimized for small-world networks and, at the same time, to present a hardware-aware placement algorithm that optimizes the allocation of resources for small-world network models. We validate the algorithm with a canonical small-world network and present preliminary results for other networks derived from it

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源