论文标题
配置平衡随机请求
Configuration Balancing for Stochastic Requests
论文作者
论文摘要
与随机请求的配置平衡问题概括了许多经过深入研究的资源分配问题,例如负载平衡和虚拟电路路由。在其中,我们有$ m $资源和$ n $请求。每个请求都有多种可能的配置,每种请求将每个资源的负载增加一定数量。目标是为每个请求选择一种配置,以最大程度地减少MakePan:加载最多的资源的负载。在我们的工作中,我们专注于随机设置,在这种环境中,我们只知道每种配置如何增加资源负载的分布,仅在选择配置后才学习实现的值。 我们开发了与随机请求的配置平衡的离线和在线算法。当请求是离线已知的时,我们给出了一个非自适应策略,用于与随机请求进行配置平衡,即$ o(\ frac {\ log m} {\ log \ log \ log m})$ - 近似最佳自适应策略。特别是,这缩小了此问题的适应性差距,因为即使对于在相同机器上的负载平衡的特殊情况下,渐近匹配的下限也具有渐近匹配的距离。当请求在列表中在线时,我们提供了一个非自动政策,即$ O(\ log M)$竞争力。同样,由于非常特殊情况的信息理论下限(例如,用于无关机器上的负载平衡),该结果渐近地很紧。最后,我们展示了如何在相关机器上负载平衡的特殊情况下利用适应性,以在线获得恒定的因子近似值和$ O(\ log \ log m)$ - 近似在线。在我们所有结果中,一种至关重要的技术成分是对最佳自适应政策的新结构表征,使我们能够限制其决策之间的相关性。
The configuration balancing problem with stochastic requests generalizes many well-studied resource allocation problems such as load balancing and virtual circuit routing. In it, we have $m$ resources and $n$ requests. Each request has multiple possible configurations, each of which increases the load of each resource by some amount. The goal is to select one configuration for each request to minimize the makespan: the load of the most-loaded resource. In our work, we focus on a stochastic setting, where we only know the distribution for how each configuration increases the resource loads, learning the realized value only after a configuration is chosen. We develop both offline and online algorithms for configuration balancing with stochastic requests. When the requests are known offline, we give a non-adaptive policy for configuration balancing with stochastic requests that $O(\frac{\log m}{\log \log m})$-approximates the optimal adaptive policy. In particular, this closes the adaptivity gap for this problem as there is an asymptotically matching lower bound even for the very special case of load balancing on identical machines. When requests arrive online in a list, we give a non-adaptive policy that is $O(\log m)$ competitive. Again, this result is asymptotically tight due to information-theoretic lower bounds for very special cases (e.g., for load balancing on unrelated machines). Finally, we show how to leverage adaptivity in the special case of load balancing on related machines to obtain a constant-factor approximation offline and an $O(\log \log m)$-approximation online. A crucial technical ingredient in all of our results is a new structural characterization of the optimal adaptive policy that allows us to limit the correlations between its decisions.