论文标题

揭开模型提取的拱形灌注:统一内存系统中的攻击

Demystifying Arch-hints for Model Extraction: An Attack in Unified Memory System

论文作者

Wang, Zhendong, Zeng, Xiaoming, Tang, Xulong, Zhang, Danfeng, Hu, Xing, Hu, Yang

论文摘要

深度神经网络(DNN)模型被认为是机密的,因为它们在昂贵的培训工作,对隐私敏感的培训数据和专有网络特征中的独特价值。因此,模型值引发了对手窃取利润模型的动力,例如代表性模型提取攻击。新兴攻击可以利用对时间敏感的体系结构级事件(即,在硬件平台上披露的拱形材料),以准确提取DNN模型层信息。在本文中,我们迈出了第一步,以揭示此类拱形义的根本原因,并总结以识别它们的原则。然后,我们将这些原理应用于新兴的统一内存(UM)管理系统,并确定由UM独特的数据移动模式引起的三个新的拱形。然后,我们开发出新的提取攻击,UMPROBE。我们还创建了UM中的第一个DNN基准套件,并利用基准套件来评估UMPROBE。我们的评估表明,几乎所有受害者测试模型的UMPROBE可以以95%的精度提取层序列,因此需要更多地关注UM系统中的DNN安全性。

The deep neural network (DNN) models are deemed confidential due to their unique value in expensive training efforts, privacy-sensitive training data, and proprietary network characteristics. Consequently, the model value raises incentive for adversary to steal the model for profits, such as the representative model extraction attack. Emerging attack can leverage timing-sensitive architecture-level events (i.e., Arch-hints) disclosed in hardware platforms to extract DNN model layer information accurately. In this paper, we take the first step to uncover the root cause of such Arch-hints and summarize the principles to identify them. We then apply these principles to emerging Unified Memory (UM) management system and identify three new Arch-hints caused by UM's unique data movement patterns. We then develop a new extraction attack, UMProbe. We also create the first DNN benchmark suite in UM and utilize the benchmark suite to evaluate UMProbe. Our evaluation shows that UMProbe can extract the layer sequence with an accuracy of 95% for almost all victim test models, which thus calls for more attention to the DNN security in UM system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源