论文标题

通往扰动高原的一条​​综合道路

An integrable road to a perturbative plateau

论文作者

Blommaert, Andreas, Kruthoff, Jorrit, Yao, Shunyu

论文摘要

自90年代以来已知,二维重力理论的基础结构是可集成的结构。最近,二维重力理论恢复了广泛的关注,但现在与量子混乱有关 - 从表面上讲,没有什么比整合性。在本文中,我们返回根源,并利用dilaton重力理论的基础结构来研究较晚的大型$ e^{s_ \ text {bh}} $频谱形式的双缩放限制。在此限制下,由于整合结构而导致的新颖取消确保在每个属$ g $上,光谱形式的增长如$ t^{2g+1} $,并且属的总和会收敛,从而实现了对后期高原的扰动方法。在此过程中,我们阐明了这种整合结构的各个方面。特别是,我们解释了功能区图所起的核心作用,我们讨论了交集理论,并解释了与Dilaton重力和基质模型的关系是从更现代的全息视角。

As has been known since the 90s, there is an integrable structure underlying two-dimensional gravity theories. Recently, two-dimensional gravity theories have regained an enormous amount of attention, but now in relation with quantum chaos - superficially nothing like integrability. In this paper, we return to the roots and exploit the integrable structure underlying dilaton gravity theories to study a late time, large $e^{S_\text{BH}}$ double scaled limit of the spectral form factor. In this limit, a novel cancellation due to the integrable structure ensures that at each genus $g$ the spectral form factor grows like $T^{2g+1}$, and that the sum over genera converges, realising a perturbative approach to the late-time plateau. Along the way, we clarify various aspects of this integrable structure. In particular, we explain the central role played by ribbon graphs, we discuss intersection theory, and we explain what the relations with dilaton gravity and matrix models are from a more modern holographic perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源