论文标题

通过主动信息评估,测试和估计微调的数量

Assessing, testing and estimating the amount of fine-tuning by means of active information

论文作者

Díaz-Pachón, Daniel Andrés, Hössjer, Ola

论文摘要

引入了一个通用框架,以估计将多少外部信息注入了搜索算法,即所谓的活动信息。这是对微调测试的重新调整,其中调整对应于算法使用的预先指定知识的数量,以达到某个目标。函数$ f $量化了搜索的每个可能结果$ x $的特异性,因此算法的目标是一组高度指定的状态,而如果算法更有可能达到目标,则进行微调。随机结果$ x $的算法的分布涉及一个参数$θ$,该参数量量量化了注入了多少背景信息。此参数的一个简单选择是使用$θf$,以指数倾斜搜索算法的分布在无调的零分布下,以便获得指数的分布家族。这种算法是通过迭代大都会危机类型的马尔可夫链来获得的,这使得有可能在马尔可夫链的平衡和非平衡下计算其主动信息,而当已达到目标的微型调整状态时,有或不停止。还讨论了调整参数的其他选择$θ$。当重复和独立的算法结果可用时,开发了主动信息的非参数和参数估计器。该理论以宇宙学,学生学习,增强学习,人群遗传学的模型和进化论编程的示例进行了说明。

A general framework is introduced to estimate how much external information has been infused into a search algorithm, the so-called active information. This is rephrased as a test of fine-tuning, where tuning corresponds to the amount of pre-specified knowledge that the algorithm makes use of in order to reach a certain target. A function $f$ quantifies specificity for each possible outcome $x$ of a search, so that the target of the algorithm is a set of highly specified states, whereas fine-tuning occurs if it is much more likely for the algorithm to reach the target than by chance. The distribution of a random outcome $X$ of the algorithm involves a parameter $θ$ that quantifies how much background information that has been infused. A simple choice of this parameter is to use $θf$ in order to exponentially tilt the distribution of the outcome of the search algorithm under the null distribution of no tuning, so that an exponential family of distributions is obtained. Such algorithms are obtained by iterating a Metropolis-Hastings type of Markov chain, and this makes it possible to compute the their active information under equilibrium and non-equilibrium of the Markov chain, with or without stopping when the targeted set of fine-tuned states has been reached. Other choices of tuning parameters $θ$ are discussed as well. Nonparametric and parametric estimators of active information and tests of fine-tuning are developed when repeated and independent outcomes of the algorithm are available. The theory is illustrated with examples from cosmology, student learning, reinforcement learning, a Moran type model of population genetics, and evolutionary programming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源