论文标题

延迟意识到的可靠自动驾驶和赛车的强大控制

Delay-aware Robust Control for Safe Autonomous Driving and Racing

论文作者

Kalaria, Dvij, Lin, Qin, Dolan, John M.

论文摘要

延迟在迅速变化的环境中运行的自主系统的危害安全,例如在自动驾驶和高速赛车方面的交通参与者的非确定性。不幸的是,在传统的控制器设计或在物理世界中部署之前,通常不考虑延迟。在本文中,从非线性优化到运动计划和控制以及执行器引起的其他不可避免的延迟的计算延迟被系统地统一解决。为了处理所有这些延迟,在我们的框架中:1)我们提出了一种新的过滤方法,而没有事先了解动态和干扰分布的知识,以适应,安全地估算时间变化的计算延迟; 2)我们为转向延迟建模驱动动力; 3)所有约束优化均在强大的管模型预测控制器中实现。对于应用功能,我们证明我们的方法适合自动驾驶和自主赛车。我们的方法是独立延迟补偿控制器的新型设计。此外,在假设无延迟作为主要控制器的学习控制器的情况下,我们的方法是主要控制器的安全保护人员。

Delays endanger safety of autonomous systems operating in a rapidly changing environment, such as nondeterministic surrounding traffic participants in autonomous driving and high-speed racing. Unfortunately, delays are typically not considered during the conventional controller design or learning-enabled controller training phases prior to deployment in the physical world. In this paper, the computation delay from nonlinear optimization for motion planning and control, as well as other unavoidable delays caused by actuators, are addressed systematically and unifiedly. To deal with all these delays, in our framework: 1) we propose a new filtering approach with no prior knowledge of dynamics and disturbance distribution to adaptively and safely estimate the time-variant computation delay; 2) we model actuation dynamics for steering delay; 3) all the constrained optimization is realized in a robust tube model predictive controller. For the application merits, we demonstrate that our approach is suitable for both autonomous driving and autonomous racing. Our approach is a novel design for a standalone delay compensation controller. In addition, in the case that a learning-enabled controller assuming no delay works as a primary controller, our approach serves as the primary controller's safety guard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源