论文标题

救援的先前感知的合成数据:动物姿势估计具有非常有限的真实数据

Prior-Aware Synthetic Data to the Rescue: Animal Pose Estimation with Very Limited Real Data

论文作者

Jiang, Le, Liu, Shuangjun, Bai, Xiangyu, Ostadabbas, Sarah

论文摘要

准确注释的图像数据集是研究动物行为的重要组成部分。与我们知道并且可能存在的物种数量相比,现有的标记姿势数据集仅覆盖其中的一小部分,而构建全面的大规模数据集则非常昂贵。在这里,我们提出了一种非常数据有效的策略,该策略是针对四足动物中姿势估计的针对姿势估计的,该策略仅需要少量来自目标动物的真实图像。可以证实,在诸如ImageNet之类的通用图像数据集上具有预计权重的骨干网络可以减轻对目标动物姿势数据的高需求,并通过了解对物体细分和关键点估计的先验知识来缩短训练时间。但是,当面对严重的数据稀缺性(即$ <10^2 $真实图像)时,模型性能保持不令人满意,尤其是对于具有相当灵活性和几个可比零件的四肢而言。因此,我们引入了一种称为Pasyn的先前感知的合成动物数据生成管道,以增强动物姿势数据对可靠的姿势估计所必需的数据。 Pasyn通过在几种动画3D动物模型上训练变异生成模型,生成概率 - valid合成姿势数据集,突触。此外,风格转移策略被用来将合成动物形象融合到真实背景中。我们通过三个流行的骨干网络评估了方法的改进,并测试了其姿势估计的准确性,并在动物园中从真实动物中收集的公共动物姿势图像以及从真实的动物中收集的姿势估计准确性。

Accurately annotated image datasets are essential components for studying animal behaviors from their poses. Compared to the number of species we know and may exist, the existing labeled pose datasets cover only a small portion of them, while building comprehensive large-scale datasets is prohibitively expensive. Here, we present a very data efficient strategy targeted for pose estimation in quadrupeds that requires only a small amount of real images from the target animal. It is confirmed that fine-tuning a backbone network with pretrained weights on generic image datasets such as ImageNet can mitigate the high demand for target animal pose data and shorten the training time by learning the the prior knowledge of object segmentation and keypoint estimation in advance. However, when faced with serious data scarcity (i.e., $<10^2$ real images), the model performance stays unsatisfactory, particularly for limbs with considerable flexibility and several comparable parts. We therefore introduce a prior-aware synthetic animal data generation pipeline called PASyn to augment the animal pose data essential for robust pose estimation. PASyn generates a probabilistically-valid synthetic pose dataset, SynAP, through training a variational generative model on several animated 3D animal models. In addition, a style transfer strategy is utilized to blend the synthetic animal image into the real backgrounds. We evaluate the improvement made by our approach with three popular backbone networks and test their pose estimation accuracy on publicly available animal pose images as well as collected from real animals in a zoo.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源