论文标题

识别体重变化的潜在因果模型

Identifying Weight-Variant Latent Causal Models

论文作者

Liu, Yuhang, Zhang, Zhen, Gong, Dong, Gong, Mingming, Huang, Biwei, Hengel, Anton van den, Zhang, Kun, Shi, Javen Qinfeng

论文摘要

因果表示学习的任务旨在揭示影响低级观察结果的潜在高级因果表示。但是,从观察到的数据中确定真正的潜在因果表示,同时允许潜在变量之间的瞬时因果关系,这仍然是一个挑战。为此,我们从对从观察结果识别潜在空间的三个内在特性的分析开始:传递性,置换不确定性和缩放不确定性。我们发现,传递性在阻碍潜在因果表示的识别性方面起关键作用。为了解决由于传递性而引起的无法识别的问题,我们引入了一种新颖的可识别性条件,其中潜在的潜在因果模型满足线性高斯模型,在该模型中,因果系数和高斯噪声的分布受到其他观察到的变量的调节。在某些温和的假设下,我们可以证明潜在因果表示可以识别为微不足道的置换和缩放。此外,基于这个理论结果,我们提出了一种新的方法,称为结构性变异自动编码器,该方法直接学习潜在的因果表示及其之间的因果关系,以及从潜在因果变量到观察到的映射。我们表明,所提出的方法渐近地学习了真实参数。关于合成和实际数据的实验结果证明了识别性和一致性结果以及所提出的方法在学习潜在因果表示方面的功效。

The task of causal representation learning aims to uncover latent higher-level causal representations that affect lower-level observations. Identifying true latent causal representations from observed data, while allowing instantaneous causal relations among latent variables, remains a challenge, however. To this end, we start from the analysis of three intrinsic properties in identifying latent space from observations: transitivity, permutation indeterminacy, and scaling indeterminacy. We find that transitivity acts as a key role in impeding the identifiability of latent causal representations. To address the unidentifiable issue due to transitivity, we introduce a novel identifiability condition where the underlying latent causal model satisfies a linear-Gaussian model, in which the causal coefficients and the distribution of Gaussian noise are modulated by an additional observed variable. Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling. Furthermore, based on this theoretical result, we propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them, together with the mapping from the latent causal variables to the observed ones. We show that the proposed method learns the true parameters asymptotically. Experimental results on synthetic and real data demonstrate the identifiability and consistency results and the efficacy of the proposed method in learning latent causal representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源