论文标题
在1.064-10.6 $ $ m范围内由激光波长驱动的等离子体表征作为未来的极端紫外线。
Characterization of plasmas driven by laser wavelengths in the 1.064-10.6 $μ$m range as future extreme ultraviolet light sources
论文作者
论文摘要
我们表征了由$λ_{\ MathRM {laser}} = 1.064-1064-1064-1064-1064-1064-1064- $ $ $ m $ m范围驱动的极端紫外线(EUV)光源等离子体的特性。激光辐射的球形锡微孔目标的详细数值模拟显示,激光波长对激光光吸收性和产生EUV辐射的转换效率具有很强的依赖性。发现辐射损耗在所有激光波长中都占主导地位,并且随着激光波长的增加,从动力学到带内辐射损耗的明显转移。我们发现,最大转化效率的存在,接近$λ_{\ mathrm {laser}} = 4 $ $μ$ m,源自激光光的光学深度与频段内EUV光子之间的相互作用,用于此特定目标几何。
We characterize the properties of extreme ultraviolet (EUV) light source plasmas driven by laser wavelengths in the $λ_{\mathrm{laser}} = 1.064 - 10.6 $ $μ$m range. Detailed numerical simulations of laser-irradiated spherical tin microdroplet targets reveal a strong laser-wavelength dependence on laser light absorptivity and the conversion efficiency of generating EUV radiation. Radiative losses are found to dominate the power balance for all laser wavelengths, and a clear shift from kinetic to in-band radiative losses with increasing laser wavelength is identified. We find that the existence of maximum conversion efficiency, near $ λ_{\mathrm{laser}} = 4 $ $μ$m, originates from the interplay between the optical depths of the laser light and the in-band EUV photons for this specific target geometry.