论文标题

GAITFI:通过WiFi和视觉多模式学习的强大无设备识别

GaitFi: Robust Device-Free Human Identification via WiFi and Vision Multimodal Learning

论文作者

Deng, Lang, Yang, Jianfei, Yuan, Shenghai, Zou, Han, Lu, Chris Xiaoxuan, Xie, Lihua

论文摘要

作为人类识别的重要生物标志物,可以通过被动传感器在没有主题合作的情况下以远距离收集人步态,这在预防犯罪,安全检测和其他人类识别应用中起着至关重要的作用。目前,大多数研究工作都是基于相机和计算机视觉技术来执行步态识别的。但是,在面对不良的照明时,基于视觉的方法并不可靠,导致性能降解。在本文中,我们提出了一种新型的多模式步态识别方法,即gaitfi,该方法利用WiFi信号和视频进行人类识别。在Gaitfi中,收集了反映WiFi多路径传播的通道状态信息(CSI),以捕获人体步态,而视频则由摄像机捕获。为了了解强大的步态信息,我们建议使用轻量级残留卷积网络(LRCN)作为骨干网络,并通过整合WiFi和Vision功能来进一步提出了两流gaitfi的步态检索任务。通过在不同级别的特征上的三胞胎损失和分类损失训练gaitfi。广泛的实验是在现实世界中进行的,该实验表明,基于单个WiFi或摄像机的GAITFI优于最先进的步态识别方法,对于12个受试者的人类识别任务,达到94.2%。

As an important biomarker for human identification, human gait can be collected at a distance by passive sensors without subject cooperation, which plays an essential role in crime prevention, security detection and other human identification applications. At present, most research works are based on cameras and computer vision techniques to perform gait recognition. However, vision-based methods are not reliable when confronting poor illuminations, leading to degrading performances. In this paper, we propose a novel multimodal gait recognition method, namely GaitFi, which leverages WiFi signals and videos for human identification. In GaitFi, Channel State Information (CSI) that reflects the multi-path propagation of WiFi is collected to capture human gaits, while videos are captured by cameras. To learn robust gait information, we propose a Lightweight Residual Convolution Network (LRCN) as the backbone network, and further propose the two-stream GaitFi by integrating WiFi and vision features for the gait retrieval task. The GaitFi is trained by the triplet loss and classification loss on different levels of features. Extensive experiments are conducted in the real world, which demonstrates that the GaitFi outperforms state-of-the-art gait recognition methods based on single WiFi or camera, achieving 94.2% for human identification tasks of 12 subjects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源