论文标题

$ ro(c_ {2^n})$ - $ h \ usepline {\ mathbb {z}} $的分级均值通过概括

The $RO(C_{2^n})$-graded homotopy of $H\underline{\mathbb{Z}}$ through generalized Tate squares

论文作者

Yan, Guoqi

论文摘要

我们提出了一种新方法,以计算$ c_ {2^n} $ - Eilenberg-Mac Lane Spectrum $ h \ usepline {\ Mathbb {z}} $作为$ RO(C_ {2^n})$逐步的绿色功能,使用一般性的Tate SquareS。例如,我们完全计算了$ C_4 $ case,并研究两个$ \ Mathscr {p} $ - 族$ \ mathscr {p} = \ {e,c_2 \} $的两个$ \同要范围频谱序列。

We propose a new method to compute the $C_{2^n}$-equivariant homotopy groups of the Eilenberg-Mac Lane spectrum $H\underline{\mathbb{Z}}$ as a $RO(C_{2^n})$-graded Green functor using the generalized Tate squares. As an example, we completely compute the $C_4$ case and investigate two $\mathscr{P}$-homotopy limit spectral sequences for the family $\mathscr{P}=\{e,C_2\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源