论文标题
心心和纵隔脂肪体积预测的机器学习
Machine learning in the prediction of cardiac epicardial and mediastinal fat volumes
论文作者
论文摘要
我们提出了一种使用回归算法来预测计算机断层扫描图像中心外膜和纵隔脂肪体积的方法。获得的结果表明,可以高度相关性预测这些脂肪是可行的,从而减轻了两种脂肪体积的手动或自动分割的要求。取而代之的是,仅分割其中一个就足够了,而另一个则可以相当准确地预测。使用MLP回归剂通过旋转森林算法获得的相关系数预测基于心外膜脂肪的纵隔脂肪的相关系数为0.9876,相对绝对误差为14.4%,根相对平方误差为15.7%。基于纵隔的心外膜脂肪预测中获得的最佳相关系数为0.9683,相对绝对误差为19.6%,相对平方误差为24.9%。此外,我们分析了使用线性回归器的可行性,该回归器提供了对基础近似值的直观解释。在这种情况下,基于心外膜的纵隔脂肪的获得的相关系数为0.9534,相对绝对误差为31.6%,根相对平方误差为30.1%。关于基于纵隔脂肪的心外膜脂肪的预测,相关系数为0.8531,相对绝对误差为50.43%,根相对平方误差为52.06%。总而言之,可以通过使用这种预测方法来加快一般医学分析以及当前在最新技术中采用的细分和量化方法,从而降低成本,因此可以降低预防治疗,从而导致健康问题减少。
We propose a methodology to predict the cardiac epicardial and mediastinal fat volumes in computed tomography images using regression algorithms. The obtained results indicate that it is feasible to predict these fats with a high degree of correlation, thus alleviating the requirement for manual or automatic segmentation of both fat volumes. Instead, segmenting just one of them suffices, while the volume of the other may be predicted fairly precisely. The correlation coefficient obtained by the Rotation Forest algorithm using MLP Regressor for predicting the mediastinal fat based on the epicardial fat was 0.9876, with a relative absolute error of 14.4% and a root relative squared error of 15.7%. The best correlation coefficient obtained in the prediction of the epicardial fat based on the mediastinal was 0.9683 with a relative absolute error of 19.6% and a relative squared error of 24.9%. Moreover, we analysed the feasibility of using linear regressors, which provide an intuitive interpretation of the underlying approximations. In this case, the obtained correlation coefficient was 0.9534 for predicting the mediastinal fat based on the epicardial, with a relative absolute error of 31.6% and a root relative squared error of 30.1%. On the prediction of the epicardial fat based on the mediastinal fat, the correlation coefficient was 0.8531, with a relative absolute error of 50.43% and a root relative squared error of 52.06%. In summary, it is possible to speed up general medical analyses and some segmentation and quantification methods that are currently employed in the state-of-the-art by using this prediction approach, which consequently reduces costs and therefore enables preventive treatments that may lead to a reduction of health problems.