论文标题
基础方案的衍生等效性和对复合物的支持
Derived equivalences over base schemes and support of complexes
论文作者
论文摘要
让$ x $和$ y $是平稳的投射品种,$ k $承认形态$ f:x \ to t $和$ g:y \ to t $ to t $到第三种$ t $。我们在派生的等价$φ:d(x)\ d(y)$上制定条件,以确保$φ$由d(x \ times_t y)$中的复杂$ p \诱导,从而定义了$ f $ f $和$ g $的纤维之间的派生等价。我们将结果应用于规范的纤维化和阿尔巴尼斯纤维化。
Let $X$ and $Y$ be smooth projective varieties over a field $k$ admitting morphisms $f:X \to T$ and $g:Y \to T$ to a third variety $T$. We formulate conditions on a derived equivalence $Φ:D(X) \to D(Y)$ ensuring that $Φ$ is induced by a complex $P \in D(X \times_T Y )$, defining derived equivalences between the fibers of $f$ and $g$. We apply our results to the canonical fibration and albanese fibration.