论文标题

通过量化正规化最佳运输的收敛速率

Convergence Rates for Regularized Optimal Transport via Quantization

论文作者

Eckstein, Stephan, Nutz, Marcel

论文摘要

我们研究了随着正则化参数的消失,差异性最佳转运的收敛性消失。一般差异的尖锐费率包括相对熵或$ l^{p} $正则化,一般运输成本和多边界问题。使用量化和Martingale耦合的新方法适用于非紧密的边缘和实现,特别是对于所有有限$(2+δ)$ - 时刻的边际距离的熵正规化2-wasserstein距离的尖锐前阶项。

We study the convergence of divergence-regularized optimal transport as the regularization parameter vanishes. Sharp rates for general divergences including relative entropy or $L^{p}$ regularization, general transport costs and multi-marginal problems are obtained. A novel methodology using quantization and martingale couplings is suitable for non-compact marginals and achieves, in particular, the sharp leading-order term of entropically regularized 2-Wasserstein distance for all marginals with finite $(2+δ)$-moment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源