论文标题
一维链中的关键和非关键的非铁拓扑相变
Critical and non critical non-Hermitian topological phase transitions in one dimensional chains
论文作者
论文摘要
在这项工作中,我们使用真实空间边缘状态作为一种范式工具研究了非热拓扑相变。我们专注于Su-Schrieffer-Hegger模型的最简单的非热式变体,其中包括表示系统非热性程度的参数。我们根据到临界点的距离,研究了零能边缘在具有整数和半刻板拓扑数的非平凡拓扑阶段的行为。我们根据模型的参数来获得边缘状态可以渗透到散装中的参数,这是赫米尔米亚拓扑相变的预期。我们还表明,使用特殊点的拓扑表征,我们可以描述整个相图中边缘状态的错综复杂的手性行为。此外,我们直接通过确定相关长度临界指数来表征模型的关键性,直接从零模式边缘状态的渗透长度的数值计算中。
In this work we investigate non-Hermitian topological phase transitions using real-space edge states as a paradigmatic tool. We focus on the simplest non-Hermitian variant of the Su-Schrieffer-Hegger model, including a parameter that denotes the degree of non-hermiticity of the system. We study the behavior of the zero energy edge states at the non-trivial topological phases with integer and semi-integer topological winding number, according to the distance to the critical point. We obtain that depending on the parameters of the model the edge states may penetrate into the bulk, as expected in Hermitian topological phase transitions. We also show that using the topological characterization of the exceptional points, we can describe the intricate chiral behavior of the edge states across the whole phase diagram. Moreover, we characterize the criticality of the model by determining the correlation length critical exponent, directly from numerical calculations of the penetration length of the zero modes edge states.