论文标题

使用Delta-Adadiomics进行可靠的头部和颈部癌症局部复发预测,并以拒绝选项学习

Towards reliable head and neck cancers locoregional recurrence prediction using delta-radiomics and learning with rejection option

论文作者

Wang, Kai, Dohopolski, Michael, Zhang, Qiongwen, Sher, David, Wang, Jing

论文摘要

可靠的局部复发(LRR)预测模型对于头颈癌(HNC)患者的个性化管理很重要。这项工作旨在开发基于Delta-AdioMics功能的多型分类器,多模式和多模式(Delta-MCOM)模型,用于后处理HNC LRR,并采用具有拒绝选择(LRO)策略的学习,以通过拒绝具有较高预测不可分割的样本来提高预测可靠性。在这项回顾性研究中,我们收集了224名HNC患者的PET/CT图像和临床数据。我们计算了放射疗法前后从PET/CT图像中提取的放射线特征之间的差异,作为输入特征。使用临床参数,PET和CT放射线学特征,我们构建并优化了三个独立的单模式模型。我们将多个分类器用于模型构建,并同时使用敏感性和特异性作为培训目标。对于测试样品,我们融合了来自所有这些单模式模型的输出概率,以获得Delta-MCOM模型的最终输出概率。在LRO策略中,我们在使用Delta-MCOM模型预测并确定与更高可靠性相关的患者时估计了认知和差异不确定性。与给定阈值相比,具有更高的认知不确定性或更高的差异不确定性的预测被认为是不可靠的,并且在提供最终预测之前被拒绝。应用了对应于不同低可稳定性预测排斥比的不同阈值。 Delta-Adadiomics的包含功能提高了HNC LRR预测的准确性,并且提出的Delta-MCOM模型可以通过拒绝使用LRO策略的高不确定性样本的预测来提供更可靠的预测。

A reliable locoregional recurrence (LRR) prediction model is important for the personalized management of head and neck cancers (HNC) patients. This work aims to develop a delta-radiomics feature-based multi-classifier, multi-objective, and multi-modality (Delta-mCOM) model for post-treatment HNC LRR prediction and adopting a learning with rejection option (LRO) strategy to boost the prediction reliability by rejecting samples with high prediction uncertainties. In this retrospective study, we collected PET/CT image and clinical data from 224 HNC patients. We calculated the differences between radiomics features extracted from PET/CT images acquired before and after radiotherapy as the input features. Using clinical parameters, PET and CT radiomics features, we built and optimized three separate single-modality models. We used multiple classifiers for model construction and employed sensitivity and specificity simultaneously as the training objectives. For testing samples, we fused the output probabilities from all these single-modality models to obtain the final output probabilities of the Delta-mCOM model. In the LRO strategy, we estimated the epistemic and aleatoric uncertainties when predicting with Delta-mCOM model and identified patients associated with prediction of higher reliability. Predictions with higher epistemic uncertainty or higher aleatoric uncertainty than given thresholds were deemed unreliable, and they were rejected before providing a final prediction. Different thresholds corresponding to different low-reliability prediction rejection ratios were applied. The inclusion of the delta-radiomics feature improved the accuracy of HNC LRR prediction, and the proposed Delta-mCOM model can give more reliable predictions by rejecting predictions for samples of high uncertainty using the LRO strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源