论文标题

在智能电网通信上提高5G:一种智能跑步切片方法

Boosting 5G on Smart Grid Communication: A Smart RAN Slicing Approach

论文作者

Carrillo, Dick, Kalalas, Charalampos, Raussi, Petra, Michalopoulos, Diomidis S., Rodríguez, Demóstenes Z., Kokkoniemi-Tarkkanen, Heli, Ahola, Kimmo, Nardelli, Pedro H. J., Fraidenraich, Gustavo, Popovski, Petar

论文摘要

预计第五代(5G)和超越系统将加速电力系统向智能电网的持续转换。但是,智能网格服务和要求中的固有异质性在定义统一网络体系结构方面构成了重大挑战。在这种情况下,无线电访问网络(RAN)切片作为关键5G启用器出现,以确保智能电网中的可互操作连接和服务管理。本文介绍了一个小说的跑步切片框架,该框架利用人工智能(AI)的潜力支持IEC 61850智能电网服务。借助深入的强化学习,获得了有效的无线电资源管理,以实现SLICS,同时符合智能网格自我修复用例的严格性能要求。我们的研究结果主张采用新兴的AI本地方法在超过5G系统中进行切片,并为智能网格中的差异化服务提供基础。

Fifth-generation (5G) and beyond systems are expected to accelerate the ongoing transformation of power systems towards the smart grid. However, the inherent heterogeneity in smart grid services and requirements pose significant challenges towards the definition of a unified network architecture. In this context, radio access network (RAN) slicing emerges as a key 5G enabler to ensure interoperable connectivity and service management in the smart grid. This article introduces a novel RAN slicing framework which leverages the potential of artificial intelligence (AI) to support IEC 61850 smart grid services. With the aid of deep reinforcement learning, efficient radio resource management for RAN slices is attained, while conforming to the stringent performance requirements of a smart grid self-healing use case. Our research outcomes advocate the adoption of emerging AI-native approaches for RAN slicing in beyond-5G systems, and lay the foundations for differentiated service provisioning in the smart grid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源