论文标题

链接:用于数据驱动运动设计的一亿平面连锁机制的数据集

LINKS: A dataset of a hundred million planar linkage mechanisms for data-driven kinematic design

论文作者

Nobari, Amin Heyrani, Srivastava, Akash, Gutfreund, Dan, Ahmed, Faez

论文摘要

在本文中,我们介绍了链接,一个1亿个自由度平面链接机制和11亿个耦合器曲线的数据集比任何现有的平面机制的任何现有数据库都大于1000倍以上,并且不仅限于特定类型的机制,例如四个BARS,六杆,六个BARS,\等是典型数据库的典型机制。链接由各种组件组成,包括1亿个机制,每种机制的仿真数据,每种机制生成的标准化路径,一组策划的路径,用于生成数据和模拟机制的代码以及用于链接机制的交互式设计的实时Web演示。提供了策划的路径,以作为消除通过机制产生的路径中的偏差的量度,从而使设计空间表示更加均匀。在本文中,我们讨论了如何生成如此大的数据集以及如何通过此类规模克服重大问题的详细信息。为了生成如此大的数据集,我们介绍了一个新操作员来生成1-DOF机制拓扑,此外,我们采取了许多步骤来加快机制的缓慢模拟,并在大量线程上矢量化模拟并并行将模拟器并行,从而使模拟的模拟速度比简单模拟的800次,比简单的模拟速度更高。这是平均必须给出的,生成的500个候选者中有1个是有效的〜(所有必须模拟以确定其有效性),这意味着必须对本数据集的生成进行数十亿个模拟。然后,我们通过基于双向倒角距离的形状检索研究来证明数据集的深度,在该研究中,我们显示如何直接使用数据集来找到可以非常接近所需目标路径的路径的机制。

In this paper, we introduce LINKS, a dataset of 100 million one degree of freedom planar linkage mechanisms and 1.1 billion coupler curves, which is more than 1000 times larger than any existing database of planar mechanisms and is not limited to specific kinds of mechanisms such as four-bars, six-bars, \etc which are typically what most databases include. LINKS is made up of various components including 100 million mechanisms, the simulation data for each mechanism, normalized paths generated by each mechanism, a curated set of paths, the code used to generate the data and simulate mechanisms, and a live web demo for interactive design of linkage mechanisms. The curated paths are provided as a measure for removing biases in the paths generated by mechanisms that enable a more even design space representation. In this paper, we discuss the details of how we can generate such a large dataset and how we can overcome major issues with such scales. To be able to generate such a large dataset we introduce a new operator to generate 1-DOF mechanism topologies, furthermore, we take many steps to speed up slow simulations of mechanisms by vectorizing our simulations and parallelizing our simulator on a large number of threads, which leads to a simulation 800 times faster than the simple simulation algorithm. This is necessary given on average, 1 out of 500 candidates that are generated are valid~(and all must be simulated to determine their validity), which means billions of simulations must be performed for the generation of this dataset. Then we demonstrate the depth of our dataset through a bi-directional chamfer distance-based shape retrieval study where we show how our dataset can be used directly to find mechanisms that can trace paths very close to desired target paths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源