论文标题
扭曲仿射谎言代数的基本模块的主要子空间,$ q $ series Multisums和Nandi的身份
Principal subspaces of basic modules for twisted affine Lie algebras, $q$-series multisums, and Nandi's identities
论文作者
论文摘要
我们提供了一个观察结果,该观察结果将几个已知和猜想的$ q $系列身份与扭曲仿射谎言代数基本模块的主要模块的主要子空间理论有关。我们还指出并证明了两个新家庭,其中$ Q $ Series身份。第一个家庭为Nandi的身份提供四倍的总和表示,包括对第一个身份的明显积极表示。第二个是一个新的mod的家族10个身份,与$ \ mathrm {d} _4^{(3)} $的4级的主要字符连接。
We provide an observation relating several known and conjectured $q$-series identities to the theory of principal subspaces of basic modules for twisted affine Lie algebras. We also state and prove two new families of $q$-series identities. The first family provides quadruple sum representations for Nandi's identities, including a manifestly positive representation for the first identity. The second is a family of new mod 10 identities connected with principal characters of level 4 integrable, highest-weight modules of $\mathrm{D}_4^{(3)}$.