论文标题
使用跨域cutmix进行几个射击自适应对象检测
Few-shot Adaptive Object Detection with Cross-Domain CutMix
论文作者
论文摘要
在对象检测中,数据量和成本是一种权衡,在特定领域中收集大量数据是劳动密集型的。因此,现有的大规模数据集用于预训练。但是,当目标域与源域显着不同时,常规传输学习和域的适应性不能弥合域间隙。我们提出了一种数据综合方法,该方法可以解决大域间隙问题。在此方法中,目标图像的一部分粘贴到源图像上,并且通过利用对象边界框的信息来对齐粘贴区域的位置。此外,我们介绍了对抗性学习,以区分原始区域还是粘贴区域。所提出的方法在大量源图像和一些目标域图像上训练。在非常不同的域问题设置中,提出的方法比常规方法获得更高的精度,其中RGB图像是源域,而热红外图像是目标域。同样,在模拟图像与真实图像的情况下,提出的方法达到了更高的精度。
In object detection, data amount and cost are a trade-off, and collecting a large amount of data in a specific domain is labor intensive. Therefore, existing large-scale datasets are used for pre-training. However, conventional transfer learning and domain adaptation cannot bridge the domain gap when the target domain differs significantly from the source domain. We propose a data synthesis method that can solve the large domain gap problem. In this method, a part of the target image is pasted onto the source image, and the position of the pasted region is aligned by utilizing the information of the object bounding box. In addition, we introduce adversarial learning to discriminate whether the original or the pasted regions. The proposed method trains on a large number of source images and a few target domain images. The proposed method achieves higher accuracy than conventional methods in a very different domain problem setting, where RGB images are the source domain, and thermal infrared images are the target domain. Similarly, the proposed method achieves higher accuracy in the cases of simulation images to real images.