论文标题

主题感知的图形神经网络模型,用于知识库更新

A topic-aware graph neural network model for knowledge base updating

论文作者

Tong, Jiajun, Wang, Zhixiao, Rui, Xiaobin

论文摘要

开放的领域知识库非常重要。它通常是从百科全书网站中提取的,并被广泛用于知识检索系统,问答系统或推荐系统。在实践中,关键挑战是保持最新的知识库。与从百科全书转储中获取所有数据的笨拙获取所有数据不同,可以在避免无效提取的同时扩大知识库的新鲜度,而当前的知识基础更新方法通常确定是否需要通过构建预测模型来更新实体。但是,这些方法只能在某些特定字段中定义,由于数据源和数据结构的问题,结果证明是显而易见的偏差。对于开放域知识,用户的查询意图通常是多种多样的,因此我们构建了一个主题感知的图形网络,用于根据用户查询日志进行知识更新。我们的方法可以总结如下:1。通过用户的日志提取实体,然后将其选择为种子2。刮擦百科全书网站中种子实体的属性,并为每个实体的自我监督构造实体属性图。 3。使用实体属性图来训练GNN实体更新模型,以确定是否需要同步该实体。 4.根据最小编辑时间算法,使用百科全书知识将过滤后的实体与知识库中的实体更新。

The open domain knowledge base is very important. It is usually extracted from encyclopedia websites and is widely used in knowledge retrieval systems, question answering systems, or recommendation systems. In practice, the key challenge is to maintain an up-to-date knowledge base. Different from Unwieldy fetching all of the data from the encyclopedia dumps, to enlarge the freshness of the knowledge base as big as possible while avoiding invalid fetching, the current knowledge base updating methods usually determine whether entities need to be updated by building a prediction model. However, these methods can only be defined in some specific fields and the result turns out to be obvious bias, due to the problem of data source and data structure. The users' query intentions are often diverse as to the open domain knowledge, so we construct a topic-aware graph network for knowledge updating based on the user query log. Our methods can be summarized as follow: 1. Extract entities through the user's log and select them as seeds 2. Scrape the attributes of seed entities in the encyclopedia website, and self-supervised construct the entity attribute graph for each entity. 3. Use the entity attribute graph to train the GNN entity update model to determine whether the entity needs to be synchronized. 4.Use the encyclopedia knowledge to match and update the filtered entity with the entity in the knowledge base according to the minimum edit times algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源