论文标题
与花瓣形域相关的星状功能的系数问题
Coefficient problems for starlike functions associated with a petal shaped domain
论文作者
论文摘要
在本研究中,我们考虑了与花瓣形状域相关的星形函数的子类,最近由$$ \ Mathcal {s}^{*}}_ρ:= \ {f \ in \ nathcal {a} a}:zf'(zf'(z)/f(z)/f(z)/f(z)/f(z)/f(z)/f sinh $ sinh $ sinh^z^z^Z Z^Z^Z^Z^Z}系数相关的问题,例如尖锐的前五个系数界限,以及$ \ Mathcal {s}^{*}_ρ$的敏锐的二阶和三阶汉克级决定因素。同样,估计第六和第七系数界限以获得同一类的第四个汉克尔决定因素。
In the present investigation, we consider a subclass of starlike functions associated with a petal shaped domain, recently introduced and defined by $$\mathcal{S}^{*}_ρ:=\{f\in \mathcal{A}:zf'(z)/f(z) \prec 1+\sinh^{-1} z\}.$$ We establish certain coefficient related problems such as sharp first five coefficient bounds along with sharp second and third order Hankel determinants for $\mathcal{S}^{*}_ρ$. Also, sixth and seventh coefficient bounds are estimated to obtain the fourth Hankel determinant bound for the same class.