论文标题

预测帕尔默干旱严重程度指数的空间分布

Predicting spatial distribution of Palmer Drought Severity Index

论文作者

Grabar, V., Lukashevich, A., Zaytsev, A.

论文摘要

在做出与农业有关的决策时,特定地区干旱的可能性至关重要。预测这种概率对于同时管理和挑战至关重要。预测模型应考虑在关注区域和相邻区域之间具有复杂关系的多个因素。 我们通过提出基于时空神经网络的端到端解决方案来解决这个问题。该模型预测了帕尔默干旱严重程度指数(PDSI)的感兴趣子区域。气候模型的预测提供了模型的额外知识来源,从而导致更准确的干旱预测。 我们的模型的准确性比基线梯度提升解决方案更好,因为$ r^2 $得分为0.90美元,而梯度提升为0.85美元。具体关注是该模型的适用性范围。我们检查全球各个地区,以在不同的条件下验证它们。 我们通过分析不同场景的未来气候变化如何影响PDSI以及我们的模型如何帮助做出更好的决策和更可持续的经济学来补充结果。

The probability of a drought for a particular region is crucial when making decisions related to agriculture. Forecasting this probability is critical for management and challenging at the same time. The prediction model should consider multiple factors with complex relationships across the region of interest and neighbouring regions. We approach this problem by presenting an end-to-end solution based on a spatio-temporal neural network. The model predicts the Palmer Drought Severity Index (PDSI) for subregions of interest. Predictions by climate models provide an additional source of knowledge of the model leading to more accurate drought predictions. Our model has better accuracy than baseline Gradient boosting solutions, as the $R^2$ score for it is $0.90$ compared to $0.85$ for Gradient boosting. Specific attention is on the range of applicability of the model. We examine various regions across the globe to validate them under different conditions. We complement the results with an analysis of how future climate changes for different scenarios affect the PDSI and how our model can help to make better decisions and more sustainable economics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源