论文标题
耦合的potts模型和相关渗透中的关键点
Critical points in coupled Potts models and correlated percolation
论文作者
论文摘要
我们使用比例不变的散射理论来精确确定$ q $ - 状态potts模型的固定点,并在二维中耦合到$ r $ r $ - 状态的potts模型。对于$ q $和$ r $的整数值,固定点方程非常有限,特别表明耦合的Potts Ferromagnets中的比例不变性仅限于Ashkin-Teller Case($ Q = r = r = 2 $)。由于我们的结果扩展到状态数量的连续值,因此我们可以访问与相关渗透相关的限制$ r \ to 1 $,并表明Potts旋转簇的关键特性通常无法从fortuin-kasteleyn clusters clusters clination中获得。
We use scale invariant scattering theory to exactly determine the renormalization group fixed points of a $q$-state Potts model coupled to an $r$-state Potts model in two dimensions. For integer values of $q$ and $r$ the fixed point equations are very constraining and show in particular that scale invariance in coupled Potts ferromagnets is limited to the Ashkin-Teller case ($q=r=2$). Since our results extend to continuous values of the number of states, we can access the limit $r\to 1$ corresponding to correlated percolation, and show that the critical properties of Potts spin clusters cannot in general be obtained from those of Fortuin-Kasteleyn clusters by analytical continuation.