论文标题

基于膜的光力加速度测定法

Membrane-based Optomechanical Accelerometry

论文作者

Chowdhury, Mitul Dey, Agrawal, Aman R., Wilson, Dalziel J.

论文摘要

光力学加速度计有望量子限制的读数,高检测带宽,自校准和辐射压力稳定。我们提出了一个简单,可扩展的平台,该平台以声音频率的纳米$ g $敏感性实现了这些好处,该平台基于一对垂直集成的Si $ _3 $ n $ _4 $ _4 $ _4 $膜具有不同刚度,形成了光腔。作为演示,我们集成了超高Q($> 10^7 $),毫米级SI $ _3 $ n $ _4 $ _4 $ trampoline膜上,上面是同一Si芯片上未完美的膜,形成了finesse $ \ natercal $ \ nathcal {f} \ and cavity。使用传输中的直接照相检测,我们通过以7 fm/$ \ sqrt {\ text {hz}} $的射击量不重点解决膜的相对位移,得出了562 N $ g/\ sqrt a的热 - 净加速度的敏感性,产生了热量限制的加速度。集中在基本的蹦床共振(40 kHz)上。为了说明辐射压力稳定的优势,我们将蹦床浸泡到4 Mk的有效温度,并利用减少的能量方差来解决50 n $ g/\ sqrt {\ sqrt {\ text {hz}} $的应用随机加速度,并在几分钟内进行。将来,我们设想了在低温恒温器中运行的这些设备的小型阵列,以寻找基本的弱力,例如暗物质。

Optomechanical accelerometers promise quantum-limited readout, high detection bandwidth, self-calibration, and radiation pressure stabilization. We present a simple, scalable platform that enables these benefits with nano-$g$ sensitivity at acoustic frequencies, based on a pair of vertically integrated Si$_3$N$_4$ membranes with different stiffnesses, forming an optical cavity. As a demonstration, we integrate an ultrahigh-Q ($>10^7$), millimeter-scale Si$_3$N$_4$ trampoline membrane above an unpatterned membrane on the same Si chip, forming a finesse $\mathcal{F}\approx2$ cavity. Using direct photodetection in transmission, we resolve the relative displacement of the membranes with a shot-noise-limited imprecision of 7 fm/$\sqrt{\text{Hz}}$, yielding a thermal-noise-limited acceleration sensitivity of 562 n$g/\sqrt{\text{Hz}}$ over a 1 kHz bandwidth centered on the fundamental trampoline resonance (40 kHz). To illustrate the advantage of radiation pressure stabilization, we cold damp the trampoline to an effective temperature of 4 mK and leverage the reduced energy variance to resolve an applied stochastic acceleration of 50 n$g/\sqrt{\text{Hz}}$ in an integration time of minutes. In the future, we envision a small-scale array of these devices operating in a cryostat to search for fundamental weak forces such as dark matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源