论文标题
一维
Multiversality and Unnecessary Criticality in One Dimension
论文作者
论文摘要
我们提出了旋转梯子的显微镜模型,这些模型表现出连续的临界表面,这些表面的性质和存在异常,无法从侧翼阶段的属性和存在中推断出来。这些模型表现出“多宇宙性” - 在临界表面的有限区域上存在不同的普遍性类别,分隔了两个不同的阶段 - 或其近距离表亲,“不必要的临界” - 在一个单个(可能是琐碎的相位)中存在稳定的临界表面。我们使用Abelian琼脂化和密度静脉重骨化组模拟阐明了这些特性,并尝试提炼这些考虑到这些考虑所需的关键成分。
We present microscopic models of spin ladders which exhibit continuous critical surfaces whose properties and existence, unusually, cannot be inferred from those of the flanking phases. These models exhibit either `multiversality' -- the presence of different universality classes over finite regions of a critical surface separating two distinct phases -- or its close cousin, `unnecessary criticality'-- the presence of a stable critical surface within a single, possibly trivial, phase. We elucidate these properties using Abelian bosonization and density-matrix renormalization-group simulations, and attempt to distill the key ingredients required to generalize these considerations.