论文标题
探索多转向主题驱动的对话中的有效信息利用
Exploring Effective Information Utilization in Multi-Turn Topic-Driven Conversations
论文作者
论文摘要
对话总是与某些主题有关。但是,由于预先训练的语言模型(PLM)的输入长度限制,在当前对话生成模型中同时将对话历史记录和主题信息融合在一起是具有挑战性的。为了扩展PLM可以使用的信息,我们使用具有多个融合中的频道(FID)的某些提示(FID)编码主题和对话历史信息信息,并探索三个不同频道设置的影响。在本文中,我们的实验集中在一个名为NaturalConv的特定中国数据集上,在该数据集围绕着最近的新闻。我们彻底比较了不同的对话模型和不同的FID频道设置。经验结果表明,通过将我们提出的整个通道与其他历史频道相结合,我们的方法可以在NaturalConv上实现竞争性能,从而可以从过长的文本中编码各种信息。
Conversations are always related to certain topics. However, it is challenging to fuse dialogue history and topic information from various sources at the same time in current dialogue generation models because of the input length limit of pre-trained language models (PLMs). In order to expand the information that PLMs can utilize, we encode topic and dialogue history information using certain prompts with multiple channels of Fusion-in-Decoder (FiD) and explore the influence of three different channel settings. In this paper, our experiments focus on a specific Chinese dataset named NaturalConv, where the conversation revolves around a piece of recent news. We thoroughly compared different dialogue models and different FiD channel settings. Empirical results show that by combining our proposed whole passage channel with additional history channel, our methods can achieve competitive performance on NaturalConv, making it possible to encode various information from excessively long texts.