论文标题
运行时间的系统理论过程分析有保证的神经网络控制系统
Systems Theoretic Process Analysis of a Run Time Assured Neural Network Control System
论文作者
论文摘要
这项研究考虑了使用神经网络控制系统(NNCS)的深入增强学习(RL)战术自动驾驶仪,确定安全限制并开发运行时间保证(RTA)的问题。该研究研究了NNCS执行自动形成飞行的特定用例,而RTA系统可提供避免碰撞和地理保证。首先,应用系统理论事故模型和过程(邮票)用于确定事故,危害和安全限制,并定义地面站的功能控制系统框图,载人飞行线索和代理无人翼翼人。然后,将系统理论过程分析(STPA)应用于地面站,载人飞行铅,替代无人翼曼和边锋飞机的内部元素的相互作用,以识别不安全的控制措施,导致各种的情况以及安全要求减轻风险的情况。这项研究是邮票和STPA在由RTA界定的NNCS中的第一次应用。
This research considers the problem of identifying safety constraints and developing Run Time Assurance (RTA) for Deep Reinforcement Learning (RL) Tactical Autopilots that use neural network control systems (NNCS). This research studies a specific use case of an NNCS performing autonomous formation flight while an RTA system provides collision avoidance and geofence assurances. First, Systems Theoretic Accident Models and Processes (STAMP) is applied to identify accidents, hazards, and safety constraints as well as define a functional control system block diagram of the ground station, manned flight lead, and surrogate unmanned wingman. Then, Systems Theoretic Process Analysis (STPA) is applied to the interactions of the the ground station, manned flight lead, surrogate unmanned wingman, and internal elements of the wingman aircraft to identify unsafe control actions, scenarios leading to each, and safety requirements to mitigate risks. This research is the first application of STAMP and STPA to an NNCS bounded by RTA.