论文标题

时间图神经网络的解释器

An Explainer for Temporal Graph Neural Networks

论文作者

He, Wenchong, Vu, Minh N., Jiang, Zhe, Thai, My T.

论文摘要

时间图神经网络(TGNN)由于能够捕获图形拓扑依赖性和非线性时间动力学的能力而广泛用于建模与图形相关的任务。 TGNN的解释对于透明且值得信赖的模型至关重要。但是,复杂的拓扑结构和时间依赖性使解释TGNN模型非常具有挑战性。在本文中,我们为TGNN模型提出了一个新颖的解释器框架。给定图表上的时间序列待解释,该框架可以在一个时间段内以概率图形模型的形式识别出主要的解释。关于运输领域的案例研究表明,所提出的方法可以在一个时间段内发现道路网络中的动态依赖性结构。

Temporal graph neural networks (TGNNs) have been widely used for modeling time-evolving graph-related tasks due to their ability to capture both graph topology dependency and non-linear temporal dynamic. The explanation of TGNNs is of vital importance for a transparent and trustworthy model. However, the complex topology structure and temporal dependency make explaining TGNN models very challenging. In this paper, we propose a novel explainer framework for TGNN models. Given a time series on a graph to be explained, the framework can identify dominant explanations in the form of a probabilistic graphical model in a time period. Case studies on the transportation domain demonstrate that the proposed approach can discover dynamic dependency structures in a road network for a time period.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源