论文标题

通过图形建模与实例有关的嘈杂标签学习

Instance-Dependent Noisy Label Learning via Graphical Modelling

论文作者

Garg, Arpit, Nguyen, Cuong, Felix, Rafael, Do, Thanh-Toan, Carneiro, Gustavo

论文摘要

在深度学习的生态系统中,嘈杂的标签是不可避免的,但很麻烦,因为模型可以轻松过度拟合它们。标签噪声有许多类型,例如对称,不对称和实例依赖性噪声(IDN),而IDN是唯一取决于图像信息的类型。鉴于标签错误的标签很大程度上是由于图像中存在的视觉类别不足或模棱两可的信息引起的,因此对图像信息的这种依赖性使IDN成为可研究的标签噪声的关键类型。为了提供一种有效的技术来解决IDN,我们提出了一种称为InstanceGM的新图形建模方法,该方法结合了歧视和生成模型。实例GM的主要贡献是:i)使用连续的Bernoulli分布来训练生成模型,提供重要的训练优势,ii)探索最先进的噪声标签歧视分类器,以从依赖实例噪声标签样品中生成清洁标签。 InstanceGM具有当前嘈杂的标签学习方法的竞争力,尤其是在IDN基准测试中,使用合成和现实世界数据集,在大多数实验中,我们的方法比竞争对手表现更好的准确性。

Noisy labels are unavoidable yet troublesome in the ecosystem of deep learning because models can easily overfit them. There are many types of label noise, such as symmetric, asymmetric and instance-dependent noise (IDN), with IDN being the only type that depends on image information. Such dependence on image information makes IDN a critical type of label noise to study, given that labelling mistakes are caused in large part by insufficient or ambiguous information about the visual classes present in images. Aiming to provide an effective technique to address IDN, we present a new graphical modelling approach called InstanceGM, that combines discriminative and generative models. The main contributions of InstanceGM are: i) the use of the continuous Bernoulli distribution to train the generative model, offering significant training advantages, and ii) the exploration of a state-of-the-art noisy-label discriminative classifier to generate clean labels from instance-dependent noisy-label samples. InstanceGM is competitive with current noisy-label learning approaches, particularly in IDN benchmarks using synthetic and real-world datasets, where our method shows better accuracy than the competitors in most experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源