论文标题
预期的Wasserstein距离中的经验度量的收敛:$ \ Mathbb {r}^d $中的非渐近显式界限
Convergence of the empirical measure in expected Wasserstein distance: non asymptotic explicit bounds in $\mathbb{R}^d$
论文作者
论文摘要
我们提供一些具有明确常数的非渐近界限,这些界限衡量了与I.I.D.相关的经验度量的预期瓦斯汀距离的收敛速率。 $ n $ - 示例的$ \ mathbb {r}^d $上的给定概率分布的样本。
We provide some non asymptotic bounds, with explicit constants, that measure the rate of convergence, in expected Wasserstein distance, of the empirical measure associated to an i.i.d. $N$-sample of a given probability distribution on $\mathbb{R}^d$.