论文标题
使用聚焦质子梁的高精度质子治疗的尖锐剂量曲线
Sharp dose profiles for high precision proton therapy using focused proton beams
论文作者
论文摘要
与常规的X射线照射相比,已经开发出质子束治疗以更高的精度和剂量符合来照射肿瘤。如果使用较窄的质子梁,则可以进一步改善这种治疗方式的剂量符合性。尽管如此,这仍然受到质子通过组织的多种库仑散射的限制。这项工作的主要目的是开发产生狭窄质子束并研究所得剂量谱的技术。我们介绍并评估了三种不同的质子束成型技术:1)金属准直仪(100/150〜MEV),2)集中常规 - (100/150〜MEV),3)聚焦高能(350〜MEV,射击,直发)质子束。聚焦受Twiss参数$α$〜($α_0$)的初始值的控制,并且可以用磁性粒子加速器光学元件实现。水中的剂量分布是通过使用GEANT4的蒙特卡洛模拟计算的,除了目标的横梁尺寸〜($σ_T$)外,通过目标与表面剂量比(TSDR)进行了评估。目标定义为布拉格峰或焦点的位置。不同的技术显示出巨大不同的剂量谱,其中聚焦给出了明显更高的相对靶剂量和对原代质子的有效使用。半径<2〜mm的金属准直仪得到低的TSDR(<〜0.7)和大$σ_T$(> 〜3.6〜mm)。相比之下,集中的常规(150〜MEV)能量的光束产生了一个非常高的TSDR(> 〜80),其$σ_T$与准直的光束相似。高能量集中的光束能够产生> 100和$σ_t$ 1.5毫米左右的TSDR。从这项研究中,实施磁性浓缩的质子束在小病变或与有风险的健康器官附近的放射疗法中实现非常有吸引力。这也可能导致空间分级放射疗法的范式变化。
Proton beam therapy has been developed to irradiate the tumor with higher precision and dose conformity compared to conventional X-ray irradiation. The dose conformity of this treatment modality may be further improved if narrower proton beams are used. Still, this is limited by multiple Coulomb scattering of protons through tissue. The primary aim of this work was to develop techniques to produce narrow proton beams and investigate the resulting dose profiles. We introduced and assessed three different proton beam shaping techniques: 1) metal collimators (100/150~MeV), 2) focusing of conventional- (100/150~MeV), and 3) focusing of high-energy (350~MeV, shoot-through) proton beams. Focusing was governed by the initial value of the Twiss parameter $α$~($α_0$), and can be implemented with magnetic particle accelerator optics. The dose distributions in water were calculated by Monte Carlo simulations using Geant4, and evaluated by target to surface dose ratio (TSDR) in addition to the transverse beam size~($σ_T$) at the target. The target was defined as the location of the Bragg peak or the focal point. The different techniques showed greatly differing dose profiles, where focusing gave pronouncedly higher relative target dose and efficient use of primary protons. Metal collimators with radii < 2~mm gave low TSDRs (<~0.7) and large $σ_T$(>~3.6~mm). In contrast, a focused beam of conventional (150~MeV) energy produced a very high TSDR (>~80) with similar $σ_T$ as a collimated beam. High-energy focused beams were able to produce TSDRs > 100 and $σ_T$ around 1.5~mm. From this study, it appears very attractive to implement magnetically focused proton beams in radiotherapy of small lesions or tumors in close vicinity to healthy organs at risk. This can also lead to a paradigm change in spatially fractionated radiotherapy.